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A mathematical model of the two-dimensional convective diffusion of radionuclide transfer in a porous me-
dium has been considered. A fundamental solution in the form of Green’s function has been obtained for this
model. The analytical expressions of the impurity-concentration distribution for stationary conditions and for
a few kinds of boundary conditions have been given.

Introduction. Study of the processes and parameters of mass transfer in water-bearing strata is based on the
regularities of groundwater-migration theory offering a physicomathematical description of different mechanisms of
complex processes of hydrodynamic and physicochemical character.

The migration of chemical components in water-bearing strata occurs within the framework of convective-dif-
fusion processes (with allowance for the mechanism of gravitational differentiation) on which the physicochemical
transformations in groundwater and the interaction with enclosing rocks are imposed.

The analytical solutions for longitudinal convective diffusion have been obtained in [1]. Two-dimensional and
three-dimensional problems involving the parameters of transversal diffusion arise in actual porous media. Particularly
intense scattering of the impurity in a one-dimensional filtration flow is noted on arrival of the contaminant at individ-
ual portions of the water-bearing stratum, not at the entire cross section. The process of transversal mixing of liquids
has been studied to a lesser extent than longitudinal diffusion. According to [2], one uses the linear dependence on the
flow velocity for transversal dispersion; the parameter of transversal scattering is much smaller than the analogous pa-
rameter in longitudinal diffusion. Dispersion in different directions gives rise to intricately shaped contamination areals
in water-bearing horizons. This is particularly true of the conditions of filtration of contaminated waste liquids from
accumulators, tailings and slurry storages, and other types of industrial pools.

Formulation of the Problem. The problem of prediction of the formation of radionuclide-contamination are-
als with allowance for two-dimensional dispersion can be considered on the basis of a convective-diffusion model [1],
in accordance with which the concentration of the radioactive impurity is described by the equation
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To solve it we introduce into consideration the similarity number of mass transfer in migration of radionuclides in a
porous medium according to [3]: z = xv ⁄ nDL, w = yu ⁄ nDtr, τ = tv2 ⁄ Rn2DL, β = λRn2DL
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 ⁄ v2Dtr, and
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We introduce into consideration a new concentration:
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Then, with account for (3), we write
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Using the substitution a = b exp (−γτ) we transform (4) to the ordinary diffusion equation
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which has the fundamental solution
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The constant A in (6) is determined by assigning the mass of the impurity released over the period dτ in the source:
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Substituting (6) into (7), we find
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With allowance for what has been stated above, we write the fundamental solution for concentration

S = 
qdt

2πHσxσy

 exp (− λt) exp 






− 

(x − v∗t)2

2σx
2  − 

(y − u∗t)2

2σy
2







 , (9)
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Discussion of Results. The solution (9) determines the line of constant concentration in the form of an ellipse
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with the center at the point (v∗t, u∗t), the large axis 2√2σx2d2, the small axis 2√2σy2d2, the eccentricity ε =
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Constant-concentration ellipses evolve with time. The reason is that the coordinates of the focus d are expo-
nentially dependent on the decay constant of a radionuclide λ. Furthermore, the contamination areal is substantially de-
pendent on the distribution coefficient Kd which determines dispersion in longitudinal and transverse directions.

The stationary solution of Eq. (2) for ∂ ⁄ ∂τ = 0 is found using the fundamental solution (6) in which we must
replace τ by ρ = τ − τ∗ (τ∗ is the instant of time at which the impurity source acts; thereafter we must integrate the
result from 0 to ∞ (continuous arrival of the impurity with a flow rate q at the instant τ) and let it tend to infinity.
As a result we obtain
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where N2 = z2 + 
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. Transforming thereafter (12) using the substitution ρ = 
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Here K0(N√γ ) is a modified Bessel function of the second kind and of zero order (Macdonald function). In the par-
ticular case of a stable impurity λ = 0 and isotropic dispersion DL = Dtr = D at R = 1 expression (14) yields
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where r = √x2 + y2 and M = √v2 + w2 is the filtration-rate modulus. The solution (15) has been obtained by
G. I. Marchuk [4].

Green’s function (9) enables us to construct the solution of problems for more intricate impurity sources,
too. Since Eq. (1) is linear, the superposition principle [3] holds; according to this principle, the propagation of the
impurity from individual sources is independent and the total concentration is the sum of the concentrations from
each source
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For the radioactive indicator in a transversely homogeneous porous stratum (∂ ⁄ ∂y = 0) with a stepwise initial

distribution, we have S(X, 0) = 0 for X > L, S(X, 0) = C0 for X < L, and C → 0 for X → ∞. Integrating (16), we
obtain
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Here erf (ψ) is the probability integral (Laplace function). Equation (17) at R = 1 takes the form obtained in [5].
For an extended instantaneous source Q with length L and width W, we can obtain the analytical solution by

integrating expression (16) for C0 = Q ⁄ (LW). As a result of the integration we have
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In expression (18), it is assumed that, at the initial instant of time, the coordinates of the source’s ends are equal to
(−L ⁄ 2, L ⁄ 2) and (−W ⁄ 2, W ⁄ 2). It is noteworthy that the solution in the form (18) for u = 0 is used in the GW
SCREEN program [9] for prediction of the contamination of a water-bearing horizon from radioactive-waste storages.

Conclusions. The obtained fundamental solution of the problem of two-dimensional convective diffusion en-
ables one to find analytical solutions for arbitrarily shaped impurity sources.

NOTATION

C, specific activity of a radionuclide in the liquid phase, Bq ⁄ liter; C0, initial specific activity of a radionuclide
in the liquid phase, Bq ⁄ liter; D, dispersion coefficient, m2 ⁄ g; DL, longitudinal-dispersion coefficient, m2 ⁄ g; Dtr, trans-
verse-dispersion coefficient, m2/g; H, thickness of a water-bearing stratum, m; Kd, distribution coefficient of a water-
soluble compound, cm3 ⁄ kg; L, length of the impurity source, m; n, active porosity of the rock skeleton, m3 ⁄ m3; q,
flow rate of the impurity source, m3 ⁄ g; Q, activity of the impurity source, Bq; R = (1 + ρKd

 ⁄ n), retrogression coeffi-
cient; S, dimensionless specific activity; t, time, year; u and v, flow velocity in transverse and longitudinal directions,
m ⁄ year; W, length of the impurity source, m; w, dimensionless transverse coordinate; x and y, longitudinal and trans-
verse coordinates, m; z, dimensionless longitudinal coordinate; β, dimensionless decay constant of a radionuclide; λ,
decay constant of a radionuclide, 1 ⁄ g; ξ, parameter of the function; ρ, density of the rock skeleton, kg ⁄ cm3; σx, dis-
persion of the impurity in the x direction, m; σy, dispersion of the impurity in the y direction, m; τ, dimensionless
time. Subscripts: d, distribution; L, longitudinal; 0, initial; tr, transverse.
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